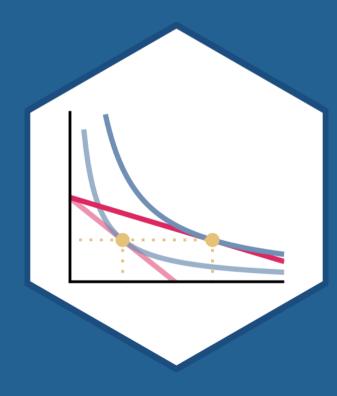
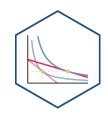
1.4 — Utility Maximization

ECON 306 • Microeconomic Analysis • Fall 2021 Ryan Safner

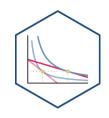
Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microF21
- microF21.classes.ryansafner.com





- We model most situations as a constrained optimization problem:
- People optimize: make tradeoffs to achieve their objective as best as they can
- Subject to **constraints**: limited resources (income, time, attention, etc)

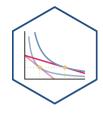


- One of the most generally useful mathematical models
- Endless applications: how we model nearly every decision-maker

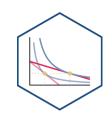
consumer, business firm, politician, judge, bureaucrat, voter, dictator, pirate, drug cartel, drug addict, parent, child, etc

• Key economic skill: recognizing how to apply the model to a situation

Remember!

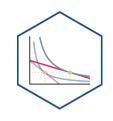


• All constrained optimization models have three moving parts:



• All constrained optimization models have three moving parts:

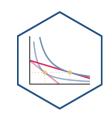
1. Choose: < some alternative >



 All constrained optimization models have three moving parts:

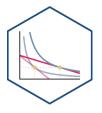
1. Choose: < some alternative >

2. In order to maximize: < some objective >



- All constrained optimization models have three moving parts:
- 1. Choose: < some alternative >
- 2. In order to maximize: < some objective >
- 3. **Subject to: < some constraints >**

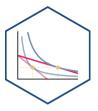
Constrained Optimization: Example I



Example: A Hood student picking courses hoping to achieve the highest GPA while getting an Econ major.

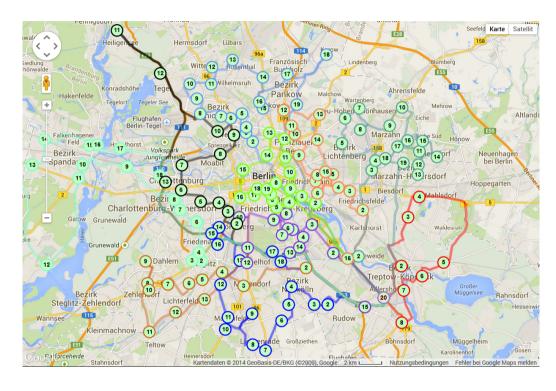
- 1. Choose:
- 2. In order to maximize:
- 3. Subject to:

Constrained Optimization: Example II

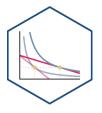


Example: How should FedEx plan its delivery route?

- 1. Choose:
- 2. In order to maximize:
- 3. Subject to:



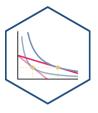
Constrained Optimization: Example III



Example: The U.S. government wants to remain economically competitive but reduce emissions by 25%.

- 1. Choose:
- 2. In order to maximize:
- 3. Subject to:

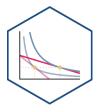
Constrained Optimization: Example IV



Example: How do elected officials make decisions in politics?

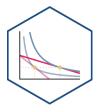
- 1. Choose:
- 2. In order to maximize:
- 3. Subject to:

The Utility Maximization Problem



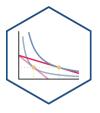
- The individual's **utility maximization problem** we've been modeling, finally, is:
- 1. Choose: < a consumption bundle >
- 2. In order to maximize: < utility >
- 3. **Subject to: < income and market prices >**

The Utility Maximization Problem: Tools



- We now have the tools to understand individual choices:
- Budget constraint: individual's constraints of income and market prices
 - How market trades off between goods
 - Marginal cost (of good \(x\), in terms of \((y)\)
- **Utility function**: individual's **objective** to maximize, based on their preferences
 - How individual trades off between goods
 - Marginal benefit (of good \(x\), in terms of \((y)\)

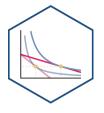
The Utility Maximization Problem: Verbally



• The individual's constrained optimization problem:

choose a bundle of goods to maximize utility, subject to income and market prices

The Utility Maximization Problem: Mathematically

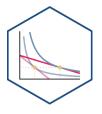


\$\$\max_{x,y \geq0} u(x,y)\$\$ \$\$s.t. p_xx+p_yy=m\$\$

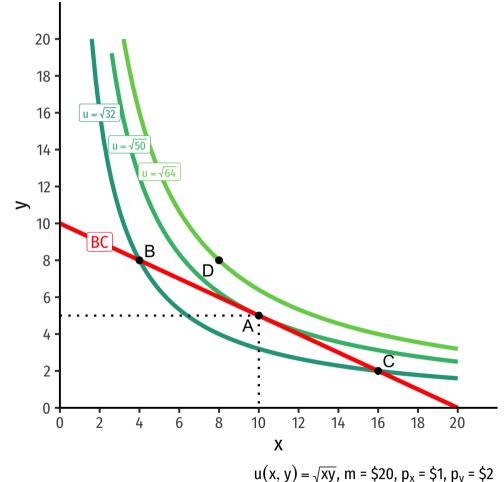
 This requires calculus to solve.[†] We will look at graphs instead!

[†] See the <u>mathematical appendix</u> in today's class notes on how to solve it with calculus, and an example.

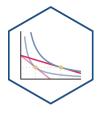
The Individual's Optimum: Graphically



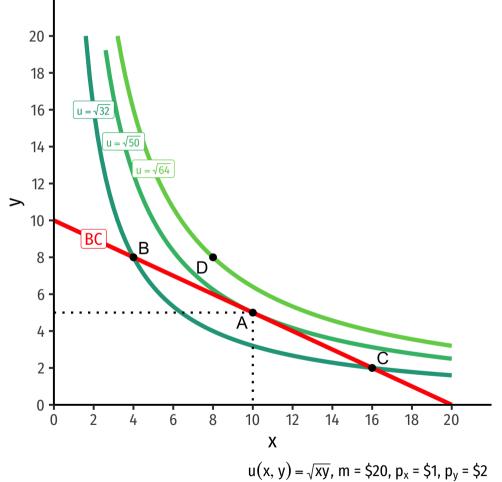
- Graphical solution: Highest indifference curve tangent to budget constraint
 - Bundle A!



The Individual's Optimum: Graphically

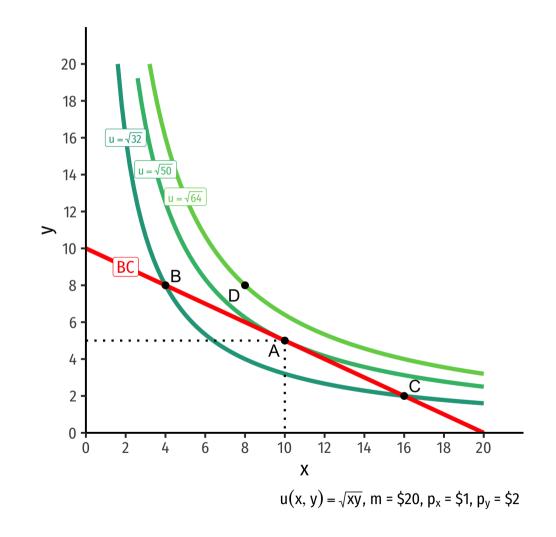


- Graphical solution: Highest indifference curve tangent to budget constraint
 - Bundle A!
- B or C spend all income, but a better combination exists

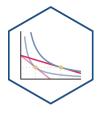


The Individual's Optimum: Graphically

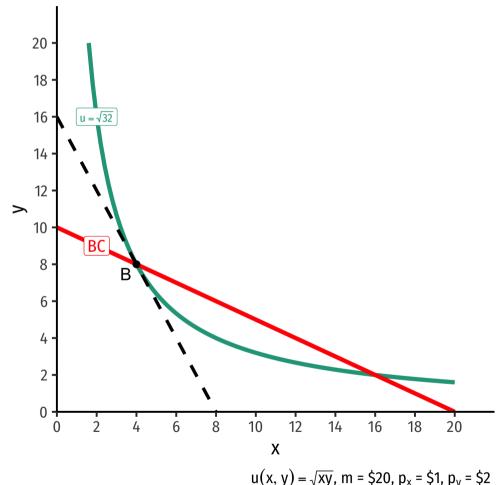
- Graphical solution: Highest indifference curve *tangent* to budget constraint
 - Bundle A!
- B or C spend all income, but a better combination exists
- D is higher utility, but *not affordable* at current income & prices



The Individual's Optimum: Why Not B?

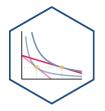


\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve} slope}} &> \color{#D7250E}{\text{budget constr.} slope}} \\ \end{align*}\$\$



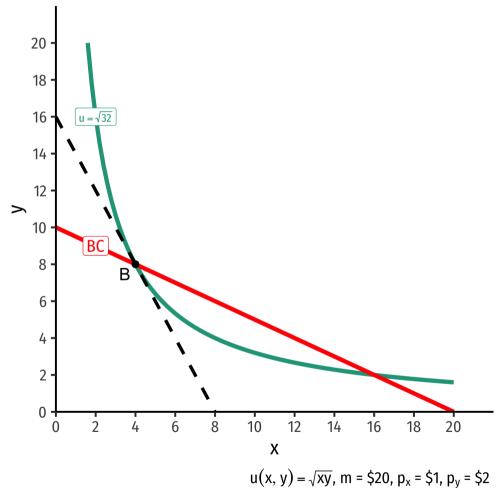
 $u(x, y) = \sqrt{xy}$, m = \$20, p_x = \$1, p_y = \$2

The Individual's Optimum: Why Not B?



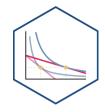
\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve} slope}} &> \color{#D7250E}{\text{budget constr.} slope}} \\ \color{#7CAE96}{\frac{MU_x}{MU_y}} &> \color{#D7250E}{\frac{p_x}{p_y}} \\ \color{#7CAE96} {2} &> \color{#D7250E}{0.5} \\\end{align*}\$\$

- Consumer views MB of \(x\) is 2 units of \(y\)
 - Consumer's "exchange rate:" 2Y:1X
- Market-determined MC of \((x\)) is 0.5 units of \ (y\)
 - Market exchange rate is 0.5Y:1X



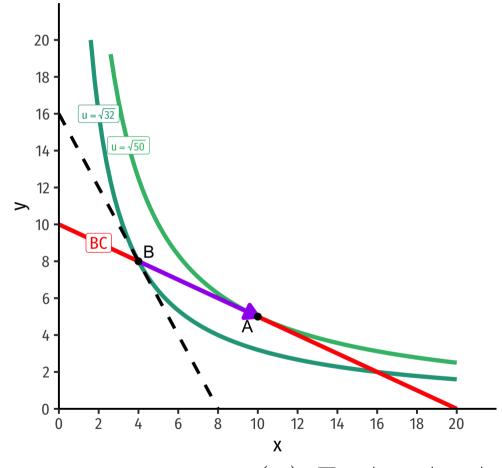
$$u(x, y) = \sqrt{xy}$$
, m = \$20, p_x = \$1, p_y = \$2

The Individual's Optimum: Why Not B?



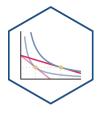
\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve slope}} &> \color{D7250E}{\text{budget constr. slope}} \\ \color{#7CAE96}{\frac{MU_x}{MU_y}} &> \color{#D7250E}{\frac{p_x}{p_y}} \\ \color{#7CAE96}{2} &> \color{#D7250E}{0.5} \\end{align*}\$\$

- Consumer views MB of \(x\) is 2 units of \(y\)
 - Consumer's "exchange rate:" 2Y:1X
- Market-determined MC of \((x\)) is 0.5 units of \((y\))
 - Market exchange rate is 0.5Y:1X
- Can spend less on y, more on x for more utility!

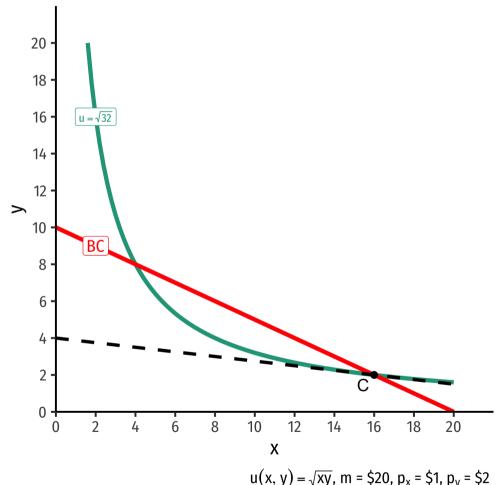


$$u(x, y) = \sqrt{xy}$$
, m = \$20, p_x = \$1, p_y = \$2

The Individual's Optimum: Why Not C?

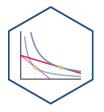


\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve} slope}} &< \color{#D7250E}{\text{budget constr.}</pre> slope}} \\ \\\end{align*}\$\$



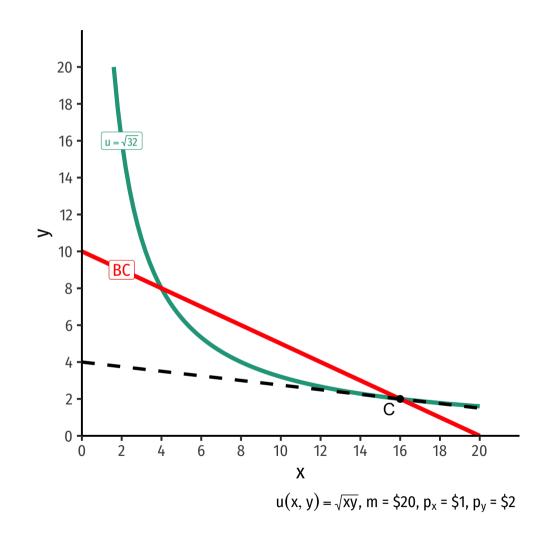
 $u(x, y) = \sqrt{xy}$, m = \$20, p_x = \$1, p_y = \$2

The Individual's Optimum: Why Not C?

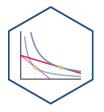


\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve slope}} &< \color{#D7250E}{\text{budget constr. slope}} \\ \color{#7CAE96}{\frac{MU_x}{MU_y}} &< \color{#D7250E}{\frac{p_x}{p_y}} \\ \color{#7CAE96}{0.125} &< \color{#D7250E}{0.5} \\end{align*}\$\$

- Consumer views MB of \(x\) is 0.125 units of \((y\))
 - Consumer's "exchange rate:" **0.125Y:1X**
- Market-determined MC of \((x\)) is 0.5 units of \((y\))
 - Market exchange rate is 0.5Y:1X

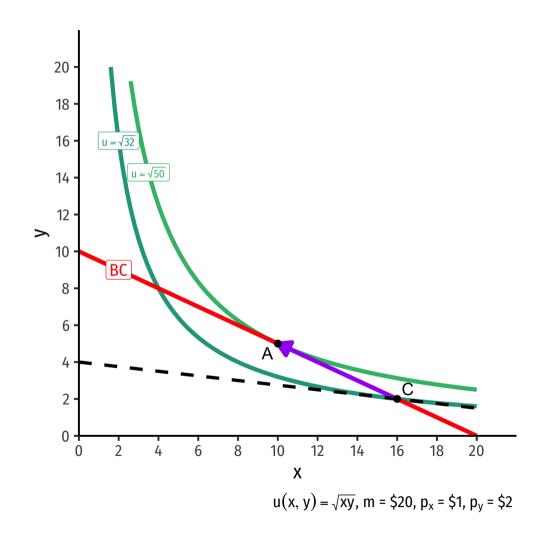


The Individual's Optimum: Why Not C?

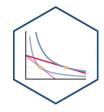


\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve slope}} &< \color{#D7250E}{\text{budget constr. slope}} \\ \color{#7CAE96}{\frac{MU_x}{MU_y}} &< \color{#D7250E}{\frac{p_x}{p_y}} \\ \color{#7CAE96}{0.125} &< \color{#D7250E}{0.5} \\end{align*}\$\$

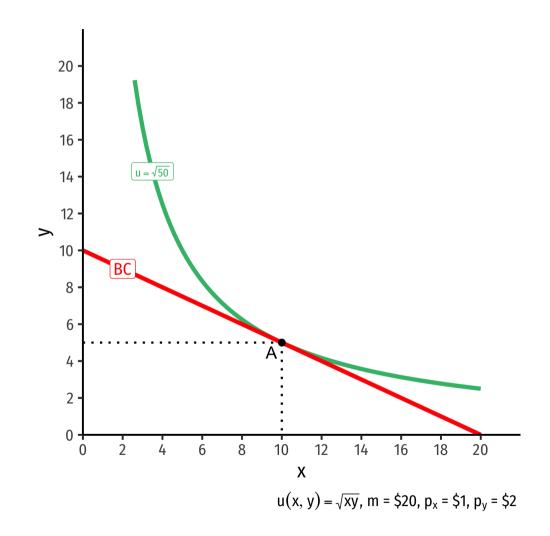
- Consumer views MB of \(x\) is 0.125 units of \((y\))
 - Consumer's "exchange rate:" **0.125Y:1X**
- Market-determined MC of \((x\)) is 0.5 units of \((y\))
 - Market exchange rate is 0.5Y:1X
- Can spend less on y, more on x for more utility!



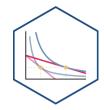
The Individual's Optimum: Why A?



\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve}
slope}} &= \color{#D7250E}{\text{budget constr.}
slope}} \\\end{align*}\$\$

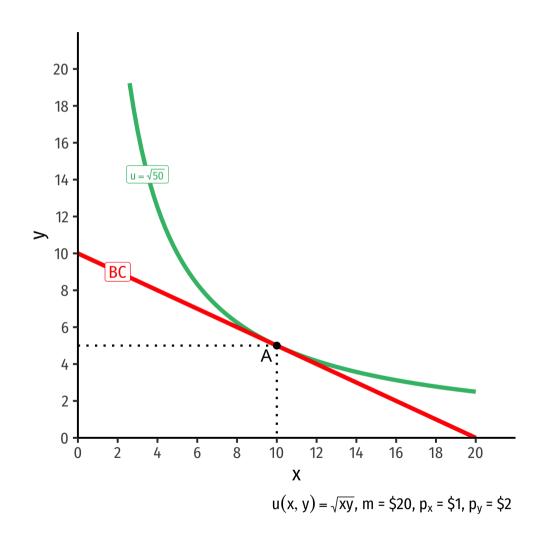


The Individual's Optimum: Why A?



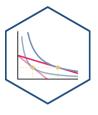
\$\$\begin{align*} \color{#7CAE96}{\text{indiff. curve slope}} &= \color{#D7250E}{\text{budget constr. slope}} \\ \color{#7CAE96}{\frac{MU_x}{MU_y}} &= \color{#D7250E}{\frac{p_x}{p_y}} \\ \color{#7CAE96}{\0.5} &= \color{#D7250E}{0.5} \\\end{align*}\$\$

- Marginal benefit = Marginal cost
 - Consumer exchanges at same rate as market
- No other combination of (x,y) exists that could increase utility![†]



[†] At *current* income and market prices!

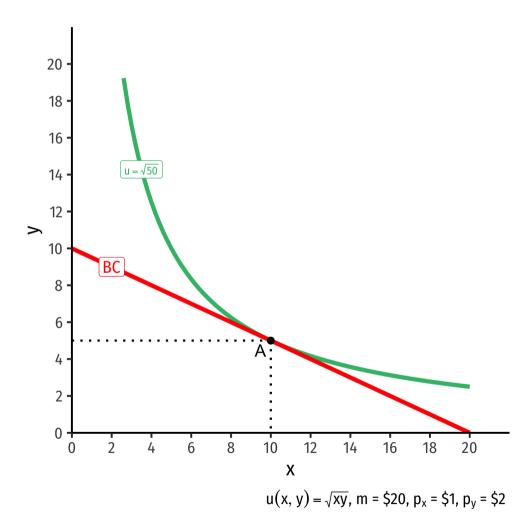
The Individual's Optimum: Two Equivalent Rules



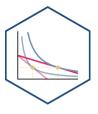
Rule 1

\$ $frac{MU_x}{MU_y} = \frac{p_x}{p_y}$

• Easier for calculation (slopes)



The Individual's Optimum: Two Equivalent Rules



Rule 1

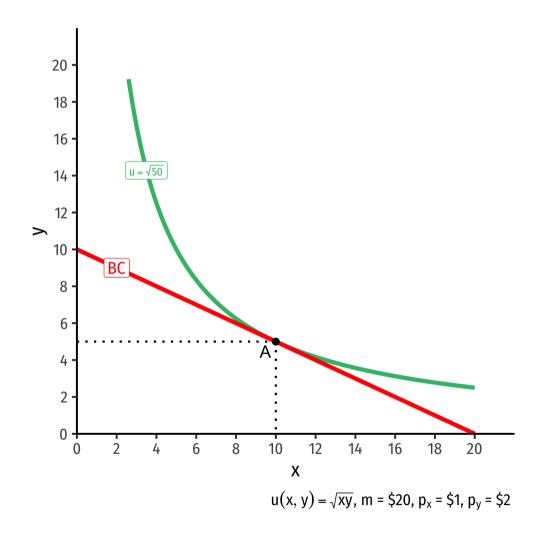
\$ $frac{MU_x}{MU_y} = \frac{p_x}{p_y}$

• Easier for calculation (slopes)

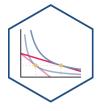
Rule 2

\$ $frac{MU_x}{p_x} = \frac{MU_y}{p_y}$

• Easier for intuition (next slide)



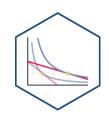
The Individual's Optimum: The Equimarginal Rule



```
$ frac{MU_x}{p_x} = \frac{MU_y}{p_y} = \cdot ds = \frac{MU_n}{p_n}
```

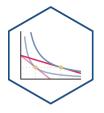
- Equimarginal Rule: consumption is optimized where the marginal utility per dollar spent is equalized across all \(n\) possible goods/decisions
- Always choose an option that gives higher marginal utility (e.g. if \((MU_x < MU_y)\)), consume more \((y\)!
 - But each option has a different price, so weight each option by its price, hence \
 (\frac{MU_x}{p_x}\)

An Optimum, By Definition



- Any optimum in economics: no better alternatives exist under current constraints
- No possible change in your consumption that would increase your utility

Practice I



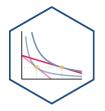
Example: You can get utility from consuming bags of Almonds ((a)) and bunches of Bananas ((b)), according to the utility function:

\$\$\begin{align*} u(a,b)&=ab\\ MU_a&=b \\ MU_b&=a \\ \end{align*}\$\$

You have an income of \$50, the price of Almonds is \$10, and the price of Bananas is \$2. Put Almonds on the horizontal axis and Bananas on the vertical axis.

- 1. What is your utility-maximizing bundle of Almonds and Bananas?
- 2. How much utility does this provide? [Does the answer to this matter?]

Practice II, Cobb-Douglas!



Example: You can get utility from consuming Burgers ((b)) and Fries ((f)), according to the utility function:

\$\$\begin{align*} u(b,f)&=\sqrt{bf} \\ MU_b&=0.5b^{-0.5}f^{0.5} \\ MU_f&=0.5b^{0.5}f^{-0.5} \\ \end{align*}\$\$

You have an income of \$20, the price of Burgers is \$5, and the price of Fries is \$2. Put Burgers on the horizontal axis and Fries on the vertical axis.

- 1. What is your utility-maximizing bundle of Burgers and Fries?
- 2. How much utility does this provide?